
NSP32m

 1 © nanoLambda, REV1.0.0 December 25, 2018

nano spectrometer module for IoT

NSP32m is an ultra compact spectral sensing platform based on revolutionary digital-nano

convergence technology. With built-in advanced spectral signal processing and standard SPI or

UART interface, it is easy to use and can be integrated into any IoT device.

NSP32m is individually calibrated nano-accurately and provides device-to-device repeatability.

Also the measured spectrum data is compatible with the spectrum data measured by conventional

optical spectrum analyzers, so that the spectral databases for applications are portable and

reusable.

Features

 Ultra compact size SPI and UART dual interfaces
 Input optics built-in Message-based Communication
 Wide field-of-view(FOV) Low power consumption
 Wide wavelength range 3.3V single power
 No input fiber, no moving parts Wide operating temperature
 Individually calibrated Repeatability, device-to-device

Potential Applications

 Health, mobile/wearable Air quality, air pollution
 Lab-on-the-phone, point-of-care LED lighting
 Food quality, food process Color, camera/display
 Precision agriculture Cosmetics
 Water quality Security

Key Parameters

Parameter Value

Wavelength range 350nm ~1050nm (max.)

Different types for different range

Resolution 10nm~30nm

Repeatability(peak) 1nm

SNR > 100:1

Dynamic range > 1000:1

Integration time 211us~, manual or auto setting

Measurement speed 55ms (min.) per spectrum measurement

Linearity 99% for optimal input power range

FOV(field of view) > +/- 60 degree

Low power consumption 11uA @standby mode

Operation temperature 0℃ ~ 60℃

NSP32m

 2 © nanoLambda, REV1.0.0 December 25, 2018

1. Module Types and Dimension

Connector Types:

Module Type Sensor Head Direction Connection Type Mating Part Number

1 Outward (Flexible) AXG820044 (20 pins) AXG720047

2 Outward (Flexible) 2.0mm pitch holes (8 pins) Wire or Header

3 Inward AXG820044 (20 pins) AXG720047

4 Inward 2.0mm pitch holes (8 pins) Wire or Header

NOTE) For 20pin connector, AXG720047 (Socket type) needs to be used on customer side.

http://www3.panasonic.biz/ac/e_download/control/connector/base-fpc/catalog/con_eng_a35us.pdf

http://www3.panasonic.biz/ac/e_download/control/connector/base-fpc/catalog/con_eng_a35us.pdf

NSP32m

 3 © nanoLambda, REV1.0.0 December 25, 2018

2. Pin Assignment and Transmission Modes

NSP32m uses the same port for SPI and UART connection.

2.1 SPI Mode

– AXG820044 (20 Pins connector)

Pin Signal I/O Pin Signal I/O

F1 GND I F2 GND I

1 NC reserved 2 VDD3V3 I

3 SPI_SCK I 4 VDD3V3 I

5 SPI_MISO O 6 VDD3V3 I

7 SPI_MOSI I 8 GND I

9 SPI_NSS I 10 GND I

11 Wakeup/Reset I 12 GND I

13 Ready trigger O 14 NC reserved

15 VDD3V3 I 16 NC reserved

17 VDD3V3 I 18 NC reserved

19 VDD3V3 I 20 NC reserved

F3 GND I F4 GND I
*NC: No Connection

– Through Hole type (2.0mm pitch, 8 pins in 2 rows wire or header)

Pin Signal I/O Pin Signal I/O

1 VDD3V3 I 2 SPI_SCK I

3 GND I 4 SPI_MISO O

5 Ready trigger O 6 SPI_MOSI I

7 Wakeup/Reset I 8 SPI_NSS I

1) Wakeup/Reset: Input with pull-up. Pull low for min. 50us to do Wakeup/Reset. Please

refer to section 4.2 for timing diagram.

2) Ready trigger: Output with push-pull. Falling edge to 1) indicate the reboot process

is completed and NSP32m is ready to use, or 2) indicate the measurement data is

ready to be retrieved. Please see commands ‘CMD_ACQ_SPECTRUM’,

‘CMD_GET_SPECTRUM’, ‘CMD_ACQ_XYZ’, and ‘‘CMD_GET_XYZ’ in section 3

and refer to section 4.7 and 4.8 for timing diagram.

3) All I/O pins except VDD and GND are at high impendence when NSP32m is in

Standby mode.

Note) A level-shift circuit might be required If connecting to a ‘non 3V3 logic level’

MCU/device such as Arduino.

NSP32m

 4 © nanoLambda, REV1.0.0 December 25, 2018

2.2 UART Mode

– AXG820044 (20 Pins connector)

Pin Signal I/O Pin Signal I/O

F1 GND I F2 GND I

1 NC reserved 2 VDD3V3 I

3 UART_RX I 4 VDD3V3 I

5 BAUD_SELECTION[1] I 6 VDD3V3 I

7 BAUD_SELECTION[0] I 8 GND I

9 UART_TX O 10 GND I

11 Wakeup/Reset I 12 GND I

13 Ready trigger O 14 NC reserved

15 VDD3V3 I 16 NC reserved

17 VDD3V3 I 18 NC reserved

19 VDD3V3 I 20 NC reserved

F3 GND I F4 GND I

– Through Hole type (2.0mm pitch, 8 pins in 2 rows wire or header)

Pin Signal I/O Pin Signal I/O

1 VDD3V3 I 2 UART_RX I

3 GND I 4 BAUD_SELECTION[1] I

5 Ready trigger O 6 BAUD_SELECTION[0] I

7 Wakeup/Reset I 8 UART_TX O

1) To select baud rate, set the BAUD_SELECTION[0], BAUD_SELECTION[1] at 0 or 1

(see table below). The selected baud rate will be set at power-on or at triggering
Wakeup/Reset.

BAUD_SELECTION[1] BAUD_SELECTION[0] Baud Rate (bits/s)

NC NC 115200

1 (VDD) 1 (VDD) 115200

1 (VDD) 0 (GND) 38400

0 (GND) 1 (VDD) 19200

0 (GND) 0 (GND) 9600

2) Wakeup/Reset: Input with pull-up. Pull low for min. 50us to do Wakeup/Reset. Please

refer to section 4.2 for timing diagram.

3) Ready trigger: Output with push-pull. Falling edge to 1) indicate the reboot process

is completed and NSP32m is ready to use, or 2) indicate the measured data is ready

to be retrieved. Please see commands ‘CMD_ACQ_SPECTRUM’,

‘CMD_GET_SPECTRUM’, ‘CMD_ACQ_XYZ’, and ‘‘CMD_GET_XYZ’ in section 3

and refer to section 4.7 and 4.8 for timing diagram.

4) All I/O pins except VDD and GND are at high impendence when NSP32m is in

Standby mode.

NSP32m

 5 © nanoLambda, REV1.0.0 December 25, 2018

Note) A level-shift circuit might be required If connecting to a ‘non 3V3 logic level’

MCU/device such as Arduino.

2.3 SPI Mode and UART Mode Selection

NSP32m uses the same port for SPI and UART connection, and auto detects between SPI

mode and UART mode using the rule below:

SPI_SCK/UART_RX NSP32m Mode

NC UART

1 (HIGH) UART

0 (LOW) SPI

Detection period: about 25ms from upon receiving the Reset/Wakeup (or power-on) to the

generating of Ready trigger. SPI_SCK/UART_RX needs to stay in the same

status during this 25ms detection period. Please refer to section 4.1 and 4.2

for timing diagrams.

Note 1) In a typical condition, NSP32m can auto set to SPI mode when connected to SPI interface,

and can auto set to UART mode when connected to UART interface, based on the mechanism

that Master SPI(mode 0)@idle the SPI_SCK is at low level whereas UART@idle the UART_TX

(UART_RX of NSP32m) is at high level.

Note 2) In case NSP32m is not in the required transmission mode, connect SPI_SCK/UART_RX

to 0 or 1 at need, and explicitly do the Wakeup/Reset operation.

2.4 NSP32m Connection Configuration

SPI connection (recommended)

NSP32m

 6 © nanoLambda, REV1.0.0 December 25, 2018

UART connection

1) SPI connection is recommended if SPI interface and GPIO(s) of connecting Ready trigger
and Wakeup/Reset are available.

2) UART connection can be used when SPI interface or GPIO of connecting Ready trigger
or Wakeup/Reset is not available, for example, for PC UART users.

3) NSP32m has built-in power-on reset. Please note that NSP32m shall not enter Standby
mode if Wakeup/Reset is not used.

4) For operation without using Ready trigger, please refer to section 3.4.6 for more
information.

3. NSP32m Commands and Operations

3.1 NSP32m Coommand overview

Command Name
Function

code
Description

Command
Packet

Length (bytes)

Return
Packet

Length (bytes)

CMD_HELLO 0x01
Used for the SPI link check or UART
link check

5 5

CMD_STANDBY 0x04
Used for NSP32m to enter Standby
mode

5 5

CMD_GET SENSOR_ID 0x06 Used for retrieving the sensor’s ID. 5 10

CMD_GET_WAVELENGTH 0x24
Used for retrieving the wavelength
positions (in the unit of ‘nm’)

5 279

CMD_ACQ_SPECTRUM 0x26
Used for initiating the spectrum
measurement

10 5

CMD_GET_SPECTRUM 0x28
Used for retrieving the measured
spectrum data

5 565

CMD_ACQ_XYZ 0x2A
Used for initiating the CIE 1931
XYZ measurement

10 5

CMD_GET_XYZ 0x2C
Used for retrieving the measured
CIE 1931 XYZ values.

5 21

NSP32m

 7 © nanoLambda, REV1.0.0 December 25, 2018

3.2 NSP32m Operation Modes:

Status diagram between Standby mode and Active mode

3.3 NSP32m Typical Operation Sequence and Example

NSP32m

 8 © nanoLambda, REV1.0.0 December 25, 2018

Note) Please check www.nanolambda.com for example source codes and more information. The above

GUI example is based on the PCUARTNSP32m example.

3.4 NSP32m Command Format and Descriptions

3.4.1 Packet Structure Overview

C++ example code for calculating checksum

3.4.2 Command ‘CMD_HELLO’_ (FUNCTION_CODE : 0x01)

 Command packet structure example (length: 5 byte)

 Return packet structure example (length: 5 byte)

 Command ‘CMD_HELLO’ is used for SPI link check or UART link check.

http://www.nanolambda.com/

NSP32m

 9 © nanoLambda, REV1.0.0 December 25, 2018

3.4.3 Command ‘CMD_STANDBY’ (FUNCTION_CODE : 0x04)

 Command packet structure example (length: 5 byte)

 Return packet structure example (length: 5 byte)

 Command ‘CMD_STANDBY’ can be used for NSP32m entering standby mode.

In SPI mode, NSP32m will enter standby mode right after the user’s MCU retrieves the return packet.

In UART mode, NSP32m will enter standby mode right after NSP32m send out the return package.

3.4.4 Command ‘CMD_GET SENSOR_ID’ (FUNCTION_CODE : 0x06)

 Command packet structure example (length: 5 byte)

 Return packet structure example (length: 10 byte)

 Command ‘CMD_GET_SENSOR_ID’ is used for retrieving the sensor ID. Every sensor has its own

unique ID (5 byte), presented in the [Sensor id] bytes as “C9-96-74-40-9B” in this example.

3.4.5 Command ‘CMD_GET_WAVELENGTH’ (FUNCTION_CODE : 0x24)

 Command packet structure example (length: 5 byte)

NSP32m

 10 © nanoLambda, REV1.0.0 December 25, 2018

 Return packet structure example (length: 279 byte)

 Command ‘CMD_GET_WAVELENGTH’ is used for retrieving the wavelength positions (in the unit of

‘nm’), in which:

 [NumOfSpectrumPoints]：(32 bit unsigned integer, little endian, max = 135)

 Number of valid spectrum points.

 [Wavelength data [ith point]]：(16 bit unsigned integer, little endian)

The wavelength in the unit of ‘nm’ corresponding to the measured ith spectrum value.

Note) [Wavelength data [ith point]] = 0 when i > NumOfSpectrumPoints.

3.4.6 Command ‘CMD_ACQ_SPECTRUM’ (FUNCTION_CODE : 0x26)

 Command packet structure example (length: 10 byte)

 Return packet structure example (length: 5 byte)

 Command ‘CMD_ACQ_SPECTRUM’ is used for initiating the spectrum measurement, in which:

 [IntegrationTime] ：(16 bit unsigned integer, little endian, max = 1200)

The length of exposure time. Exposure time (ms) = (896*[IntegrationTime] + 160) / 500. To get a

stable measurement at low light condition, IntergrationTime should be enlarged. IntergrationTime

needs to be reduced if ‘SaturationFlag = 1’ (see ‘SaturationFlag’ in section 3.4.7),

For typical usage, AE (auto-exposure integration time) is recommended.

 [FrameAvgNum] ：(8bit unsigned integer)

The number of spectrum frames to be averaged during one measurement. Larger value of

FrameAvgNum can deliver a more stable measurement result, but consumes more time due to

more frame acquisition.

 [EnableAE] ：(8bit unsigned integer, 0 or 1)

Enable or disable the AE (auto-exposure integration time). Set to 1 to enable the auto-exposure

integration time for typical usage. Set to 0 to disable.

NSP32m

 11 © nanoLambda, REV1.0.0 December 25, 2018

 [ActiveReturn] ：(8bit unsigned integer, 0 or 1)

The flag is designed for UART mode in the situation that ‘ready trigger’ pin is not accessible on

user side (e.g. when connecting from PC's UART). When the flag is set to 1, NSP32m actively

sends out the 'CMD_GET_SPECTRUM' return packet once the acquisition is done. In other words,

user only sends one 'CMD_ACQ_SPECTRUM' command packet, but gets two consecutive return

packets (immediately one return packet of ‘CMD_ACQ_SPECTRUM’ with function code 0x26,

and later the other return packet of CMD_GET_SPECTRUM’ with function code 0x28).

Note) the flag value is only effective in UART mode, and will be ignored in SPI mode.

3.4.7 Command ‘CMD_GET_SPECTRUM’ (FUNCTION_CODE : 0x28)

 Command packet structure example (length: 5 byte)

 Return packet structure example (length: 565 byte)

 Command ‘CMD_GET_SPECTRUM’ is used for retrieving the measured spectrum data, initiated by

‘CMD_ACQ_SPECTRUM’, in which:

 [IntegrationTime]：(16 bit unsigned integer, little endian, max = 1200)

A return of the used IntegrationTime. When AE is enabled, the searched intergrationTime will be

returned.

 [SaturationFlag]：(8bit unsigned integer, 0 or 1)

Indicate whether the measured spectrum is saturated or not (1 = saturated; 0 = unsaturated). If

SaturationFlag = 1, the measured spectrum can be seriously distorted and should be discarded

 [NumOfSpectrumPoints]：(32 bit unsigned integer, little endian, max = 135)

Number of valid spectrum points.

 [Spectrum data [ith point]]：(32 bit float, little endian)

The measured spectrum value corresponding to the ith wavelength (nm). Also see

‘CMD_GET_WAVELENGTH’.

Note) [Spectrum data [ith point]] = 0 when i > NumOfSpectrumPoints.

 [X], [Y] , [Z]：(32 bit float, little endian)

The measured tristimulus X, Y, and Z value of the CIE 1931 XYZ color space.

NSP32m

 12 © nanoLambda, REV1.0.0 December 25, 2018

3.4.8 Command ‘CMD_ACQ_XYZ’ (FUNCTION_CODE : 0x2A)

 Command packet structure example (length: 10 byte)

 Return packet structure example (length: 5 byte)

 Command ‘CMD_ACQ_XYZ’ is used for initiating the measurement for the tristimulus X, Y, and Z

value of the CIE 1931 XYZ color space. Please refer to section 3.4.6 for the description of

[IntegrationTime], [FrameAvgNum], [EnableAE], and [ActiveReturn]. ‘CMD_ACQ_XYZ’ is used if

‘CMD_ACQ_SPECTRUM’ is not supported in your version or when spectrum data is not needed.

3.4.9 Command ‘CMD_GET XYZ’ (FUNCTION_CODE : 0x2C)

 Command packet structure example (length: 5 byte)

 Return packet structure example (length: 21 byte)

 Command ‘CMD_GET_XYZ’ is used for retrieving the measured tristimulus X,Y and Z values, initiated

by “CMD_ACQ_XYZ’. Please refer to section 3.4.7 for the description of [IntegrationTime],

[SaturationFlag], [X], [Y], and [Z].

NSP32m

 13 © nanoLambda, REV1.0.0 December 25, 2018

4. Timing Diagram

4.1 ‘Power on’ sequence

4.2 ‘Wakeup/Reset’ sequence

‘Wakeup/Reset’ pseudo code

4.3 ‘CMD_HELLO’ sequence

NSP32m

 14 © nanoLambda, REV1.0.0 December 25, 2018

‘CMD_HELLO’ pseudo code

Note) The ‘return package’ must be completely retrieved within 100ms, upon

NSP32m completed receiving the ‘cmd package’.

4.4 ‘CMD_STANDBY’ sequence

‘CMD_STANDBY’ pseudo code

Note) The ‘return package’ must be completely retrieved within 100ms, upon

NSP32m completed receiving the ‘cmd package’.

NSP32m

 15 © nanoLambda, REV1.0.0 December 25, 2018

4.5 ‘CMD_GET SENSOR_ID’ sequence

‘CMD_GET_SENSOR_ID’ pseudo code

Note) The ‘return package’ must be completely retrieved within 100ms, upon

NSP32m completed receiving the ‘cmd package’.

4.6 ‘CMD_GET_WAVELENGTH’ sequence

NSP32m

 16 © nanoLambda, REV1.0.0 December 25, 2018

 ‘CMD_GET_WAVELENGTH’ pseudo code

Note) The ‘return package’ must be completely retrieved within 100ms, upon

NSP32m completed receiving the ‘cmd package’.

4.7 ‘CMD_ACQ_SPECTRUM’ and ‘CMD_GET_SPECTRUM’ sequence

NSP32m

 17 © nanoLambda, REV1.0.0 December 25, 2018

‘CMD_ACQ_SPECTRUM’ and ‘CMD_GET_SPECTRUM’ pseudo code

Note) The ‘return package’ must be completely retrieved within 100ms, upon

NSP32m completed receiving the ‘cmd package’.

4.8 ‘CMD_ACQ_XYZ’ and ‘CMD_GET_XYZ’ sequence

NSP32m

 18 © nanoLambda, REV1.0.0 December 25, 2018

‘CMD_ACQ_XYZ’ and ‘CMD_GET_XYZ’ pseudo code

Note) The ‘return package’ must be completely retrieved within 100ms, upon

NSP32m completed receiving the ‘cmd package’.

4.9 SPI Timing Diagram (Mode 0)

 NOTE)

 SPI baud rate max. @4Mbits/sec for receiving return packet from NSP32m, and

max. @ 2Mbits/sec for sending command packet to NSP32m.

 For more information about SPI timing diagram, please refer to

https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

NSP32m

 19 © nanoLambda, REV1.0.0 December 25, 2018

5. Electrical Characteristics

5.1 SPI Characteristics

Parameter Conditions Min Typ Max Unit

SPI baud rate Sending command packet to
NSP32m

- - 2

Mbits/s
Receiving return packet from
NSP32m

- - 4

Parameters Description

Frame Format Motorola

Data Size 8 bits

First Bit MSB first

Mode mode 0 (CPOL = 0; CPHA = 0)

CRC None

5.2 UART Characteristics

Parameters Description

Data bits 8 bits

Stop bit 1 bit

Parity NONE

Flow control NONE

Baud rate

115200bps, 38400bps,
19200bps, 9600bps,

Selected by pins
BAUD_SELECTION[1]
BAUD_SELECTION[0]

5.3 Wakeup/Reset Pin Characteristics

Parameter Min Typ Max Unit

Weak pull-up equivalent resistor 30 40 50 kΩ

Input low level voltage - - 0.3VDD V

Input high level voltage 0.7 VDD - - V

Holding time 50 - - us

5.4 Ready Trigger Pin Characteristics

Parameter Min Typ Max Unit

Output current - - 25 mA

Output low level voltage - - 0.4 V

Output high level voltage 2.4 - - V

Output fall time & rise time - - 100 ns

5.5 General Characteristics

Parameter Min Typ Max Unit

Power supply range 3.0 3.3 3.6 V

NSP32m

 20 © nanoLambda, REV1.0.0 December 25, 2018

Power
consumption

Active mode - - 23 mA

Rebooting 23 mA

Standby mode - - 11 uA

Rebooting time 25 ms

Temperature range 0 - 60 ℃

6. Platforms Supported from NSP32m

NSP32m supports a wide range of platforms via SPI or UART interfaces. The table below

summaries, but not limited to, the available libraries and examples provided by

nanolambda. For further information and example source codes, please check

www.nanolambda.com.

 C/C++ C# Java Python

API Library and
Sample Code

Download Download Download Download Download

API Library ✔ (PDF) ✔ (PDF) ✔ (PDF) ✔ (PDF) ✔ (PDF)

M
C

U

Arduino
Example

✔ (PDF)
1)Beginner[1]
2)Console Demo[1][3]

nRF52832
Example

✔ (PDF)
1)BLE Demo[1] [2]
(in conjunction with
Android GUI example)

Raspberry Pi
(Raspbian)
Example

✔ (PDF)
1)Beginner[1][3]
2)Console Demo[1][3]
3)Spectrum Meter[1][3]

Android
Example

✔ (PDF)
1) GUI Demo[2]

(in conjunction with

nRF52832 BLE example)

Windows
Example

 ✔ (PDF)

1)Beginner[3]
2)Console Demo[3]
3)Spectrum Meter[3]

✔ (PDF)
1)Beginner[3]
2)Console Demo[3]
3)Spectrum Meter[3]

✔ (PDF)
1)Beginner[3]
2)Console Demo[3]
3)Spectrum Meter[3]

Ubuntu
Example

✔ (PDF)
1)Beginner[3]
2)Console Demo[3]
3)Spectrum Meter[3]

✔ (PDF)
1)Beginner[3]
2)Console Demo[3]
3)Spectrum Meter[3]

http://www.nanolambda.com/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/
http://165.227.7.198/Resources/

NSP32m

 21 © nanoLambda, REV1.0.0 December 25, 2018

macOS
 Example

✔ (PDF)
1)Beginner[3]
2)Console Demo[3]
3)Spectrum Meter[3]

✔ (PDF)
1)Beginner[3]
2)Console Demo[3]
3)Spectrum Meter[3]

[1] Examples of using SPI connection
[2] Examples of using Bluetooth connection via nRF52832

[3] Examples of using UART connection (an additional USB-to-UART adopter might be required)

REVISION HISTORY

REVISION DATE REMARK

1.0.0 December 25, 2018 1st Draft

IMPORTANT NOTICE

nanoLambda Korea and its affiliates (“nanoLambda”) reserve the right to make corrections,

modifications, enhancements, improvements, and other changes to its products and services at

any time and to discontinue any product or service without notice. Customers should obtain the

latest relevant information before placing orders and should verify that such information is current

and complete. All products are sold subject to nanoLambda’s terms and conditions of sale

supplied at the time of order acknowledgment. Customers are responsible for their products and

applications using any nanoLambda products. nanoLambda does not warrant or represent that

any license, either express or implied, is granted under any nanoLambda patent right, copyright,

mask work right, or other nanoLambda intellectual property right relating to any combination,

machine, or process in which nanoLambda products or services are used. Information published

by nanoLambda regarding third-party products or services does not constitute a license from

nanoLambda to use such products or services or a warranty or endorsement thereof. Use of such

information may require a license from a third party under the patents or other intellectual property

of the third party, or a license from nanoLambda under the patents or other intellectual property

of nanoLambda. Reproduction of nanoLambda information in nanoLambda documents or data

sheets is permissible only if reproduction is without alteration and is accompanied by all

associated warranties, conditions, limitations, and notices. nanoLambda is not responsible or

liable for such altered documentation. Information of third parties may be subject to additional

restrictions. Resale of nanoLambda products is not allowed without written agreement.

Decompiling, disassembling, reverse engineering or attempt to reconstruct, identify or discover

any source code, underlying ideas, techniques or algorithms are not allowed by any means.

nanoLambda products are not authorized for use in safety-critical applications. Buyers represent

that they have all necessary expertise in the safety and regulatory ramifications of their

http://165.227.7.198/Resources/
http://165.227.7.198/Resources/

NSP32m

 22 © nanoLambda, REV1.0.0 December 25, 2018

applications, and acknowledge and agree that they are solely responsible for all legal, regulatory

and safety-related requirements concerning their products and any use of nanoLambda products

in such safety-critical applications, notwithstanding any applications-related information or

support that may be provided by nanoLambda. Further, buyers must fully indemnify nanoLambda

and its representatives against any damages arising out of the use of nanoLambda products in

such safety-critical applications. This Notice shall be governed by and construed in accordance

with the laws of Korea, without reference to principles of conflict of laws or choice of laws. All

controversies and disputes arising out of or relating to this Notice shall be submitted to the

exclusive jurisdiction of the Daejeon District Court in Korea as the court of first instance.

